The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons.

نویسندگان

  • Ken-ichi Inoue
  • Kosei Ito
  • Motomi Osato
  • Bernett Lee
  • Suk-Chul Bae
  • Yoshiaki Ito
چکیده

Runx3, a Runt domain transcription factor, determines neurotrophin receptor phenotype in dorsal root ganglion (DRG) neurons. Molecular mechanisms by which Runx3 controls distinct neurotrophin receptors are largely unknown. Here, we show that RUNX3 abolished mRNA induction of TRKB expression, and concomitantly altered the neurotrophin response in a differentiating neuroblastoma cell line. In contrast, RUNX3 did not play a significant role in TRKC regulation even under the relevant BMP signaling pathway. We identified putative regulatory elements of Ntrk2/NTRK2 (a gene that codes for TrkB) using an unbiased computational approach. One of these elements was a highly conserved intronic sequence that contains a cluster of Runx binding sites. In a primary culture of DRG neurons, endogenous Runx3 bound to the consensus cluster, which had repressor activity against the Ntrk2 promoter under the control of NT-3 signaling. Consistent with these findings, Runx3-deficient embryos showed an increased number of trkB+ DRG neurons and failed to maintain trkC expression. Taken together, Runx3 determines TrkC positive sensory neuron identities through the transcriptional repression of TrkB when Trk-BTrkC double positive neurons differentiate into TrkC single positive neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic regulation of the expression of neurotrophin receptors by Runx3.

Sensory neurons in the dorsal root ganglion (DRG) specifically project axons to central and peripheral targets according to their sensory modality. However, the molecular mechanisms that govern sensory neuron differentiation and the axonal projections remain unclear. The Runt-related transcription factors, Runx1 and Runx3, are expressed in DRG neuronal subpopulations, suggesting that they might...

متن کامل

A Role for Runx Transcription Factor Signaling in Dorsal Root Ganglion Sensory Neuron Diversification

Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of ...

متن کامل

Neurotrophins and hyperalgesia.

Nerve growth factor (NGF), a member of the neurotrophin family, is crucial for survival of nociceptive neurons during development. Recently, it has been shown to play an important role in nociceptive function in adults. NGF is up-regulated after inflammatory injury of the skin. Administration of exogenous NGF either systemically or in the skin causes thermal hyperalgesia within minutes. Mast ce...

متن کامل

TrkB isoforms with distinct neurotrophin specificities are expressed in predominantly nonoverlapping populations of avian dorsal root ganglion neurons.

Alternative splicing of the avian trkB receptor generates an extracellular deletion (ED) isoform missing 11 amino acids from the neurotrophin-binding domain of the full-length (FL) receptor. When expressed in fibroblasts, the ED isoform exhibited restricted neurotrophin specificity compared with that of the FL receptor. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurot...

متن کامل

An ancient neurotrophin receptor code; a single Runx/Cbfβ complex determines somatosensory neuron fate specification in zebrafish

In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 33  شماره 

صفحات  -

تاریخ انتشار 2007